1. Evaluate the expression for $x = -2$:

$$\left| \frac{\frac{2}{3} \cdot \frac{x^2 - 3}{x} - \frac{5}{x + x^2}}{x} \right|$$

A. $\frac{1}{2}$
B. $-\frac{4}{3}$
C. $\frac{4}{3}$
D. $-1/2$

2. Translate the following word phrase into an expression.

seventeen added to three times the sum of a number, x, and five

A. $3(x + 5) + 17$
B. $3 + x + 5 + 17$
C. $17 + 3x + 5$
D. $3x + 17 + 5$

3. What is the value of y?

$y + 8 - 11 = 17$

A. -2
B. 20
C. 46
D. -2
4. What is the value of y?

\[\frac{y}{8} = 4 \]

A. 24
B. 2
C. 4
D. 32

5. Solve for x.

\[(x + 18) - 27 = 6\]

A. 6
B. 21
C. 11
D. 15

6. Solve this system of equations.

\[
\begin{align*}
 x &= y + 2 \\
 2y - 3x &= 15
\end{align*}
\]

A. \(x = 11, \ y = 9\)
B. \(x = -7, \ y = -9\)
C. \(x = 23, \ y = 21\)
D. \(x = -19, \ y = -21\)

7. What is the value of y?

\[y = 6x \]

A. \(y = 1\)
B. \(y = 0\)
C. \(y = 6\)
D. Problem cannot be solved with the given information.
8. Solve for x.

\[4(2 - 3x) = 20\]

A. \(x = -144\)
B. \(x = -336\)
C. \(x = -\frac{7}{3}\)
D. \(x = -1\)

9. Choose the equation you could use to solve this problem.

Carla earns $0.50 more an hour than Calvin. Calvin earns twice as much as Jerry. Jerry earns $6.50 an hour.

How much does Carla earn an hour?

A. \(n = (6.50 ÷ 2) - 0.50\)
B. \(n = (2 \times 6.50) + 0.50\)
C. \(n = (6.50 ÷ 2) + 0.50\)
D. \(n = (2 \times 6.50) - 0.50\)

10. What is another way to write:

\(5^2\)

A. \(3 \times 3 \times 3 \times 3 \times 3\)
B. \(5 \times 3\)
C. \(5 \times 5\)
D. \(5 \times 5 \times 5\)

11. Find the standard form for:

\(1.3 \times 10^6\)

A. 1,300
B. 13,000,000
C. 1,300,000
D. 130,000
12. Find the equivalent form.

\(9\)

A. 9
B. 10 \times 9
C. 0
D. 1

13. Which of the following is true?

A. \((5)^{-3} = -0.0008\)
B. \((5)^{-3} = 0.008\)
C. \((5)^{-3} = \frac{1}{25}\)
D. \((5)^{-3} = 0.25\)

\((-3a^4 b^6 c^3)^2\)

A. \(6a^8b^{12}c^6\)
B. \(9a^8b^{12}c^6\)
C. \(9a^{16}b^{36}c^9\)
D. \(-6a^8b^{12}c^6\)

A. A
B. B
C. C
D. D

15. For \(x = -10\), find \(36 + x\).

A. -26
B. 26
C. -46
D. 46
16. Evaluate the expression for \(y = -12 \).

\[
\frac{y}{4} - y
\]

A. 15
B. -15
C. 9
D. -9

17. Simplify and evaluate the expression for \(y = 0, z = -1.5 \).

\[-0.8z + 0.005z(-0.001y - 3.1 + (-1.5z + 3))\]

A. 1.216125
B. 1.183875
C. -1.36125
D. -1.03875

18. Evaluate the expression for \(m = 4 \).

\(y = 14m \)

A. 10
B. 18
C. 56
D. 35

19. Olivia skates twice as far as Stephanie. This sum of their distances is 96 miles per month. How many miles per month does Stephanie skate?

A. 32 miles
B. 64 miles
C. 48 miles
D. 24 miles

20. Which mathematical expression represents the word expression?

19 decreased by some number

A. \(19 + n \)
B. \(n - 19 \)
C. \(19 \div n \)
D. \(19 - n \)
21. Find the missing number.

2, 6, 10, 14, 2, 22

A. 16
B. 18
C. 20
D. 24

22. Sasha built a square sandbox with a perimeter of 20 feet. She has decided that she wants to rebuild the sandbox so that each side is 3 feet longer than the original sandbox. Before she buys the materials to build the new sandbox, she needs to know the perimeter. What is the perimeter of the new sandbox?

A. 60 ft
B. 26 ft
C. 32 ft
D. 23 ft

23. What is the value of *n* in the given statement?

\[8n < 40 \]

A. *n* < 5
B. *n* \leq 5
C. *n* > 4
D. *n* \geq 4
24. Which equation best represents the graph?

![Graph with points at -0.5, 1, 2, 3, 4 on the x-axis.]

A. \(n > 0 \)
B. \(n \geq 0 \)
C. \(n \leq 1 \)
D. \(n < 1 \)

25. Fill in the blank.

If \(N + 71 = 376 \), then \(N \) is ___.

A. 310
B. 306
C. 305
D. 71

26. Find the operational symbol.

\(1,116 \ ? 18 = 62 \)

A. \(\times \)
B. \(+ \)
C. \(- \)
D. \(÷ \)
27. Ten times N is 7 less than X.

X is equal to 87.

What is the value of N?

A. 87
B. 80
C. 8
D. 8.7

28. The sum of two numbers is thirty. One number is five less than six times the other number. Find the numbers.

A. $x = 25; y = 5$
B. $x = 24.5; y = 5.5$
C. $x = 14; y = 6$
D. $x = 6.8; y = 23.2$

29. Add the quantity of six times a number decreased by fourteen to the quantity of three decreased by four-fifths of the same number.

A. $\frac{26}{3}x - 11$
B. $\frac{26}{3}x^2 - 11$
C. $\frac{34}{3}x - 17$
D. $\frac{34}{3}x^2 - 17$
30. Simplify.

\[
\frac{18r^3 - 36r^2}{-18r^2}
\]

A. \(-r^5 - 2r^4\)
B. \(-r + 2\)
C. \(-r^6 - 2\)
D. \(r - 2\)

A. A
B. B
C. C
D. D

31. Jerome is trying to work through this algebra problem for the third time. Choose the option that identifies where Jerome is making his error.

Jerome
1. \((6n - 4)^2\)
2. \((6n - 4)(6n - 4)\)
3. \(36n^2 - 24n - 24n - 16\)
4. \(36n^2 - 48n - 16\)

A. He multiplied terms in the wrong order in step 2.
B. He didn't square the terms before combining them in step 2.
C. He didn't reduce his answer to its lowest terms in step 4.
D. He multiplied negative integers incorrectly in step 2.

32. Subtract the following.

\[
(4x^3 + 2x^2 - 9x + 4) - (2x^3 - 4x^2 - 3) - (6x + 2)
\]

A. \(2x^3 - 2x^2 - 15x + 5\)
B. \(2x^3 - 2x^2 + 3x - 1\)
C. \(2x^3 + 6x^2 - 15x + 5\)
D. \(2x^3 + 6x^2 + 3x + 3\)
33. Which answer best completes the number sentence?

\[
\left(\frac{2}{3} + 1 \right)\ ? = 1
\]

A. \[x \left(1 + \frac{2}{3} \right) \]
B. \[x \cdot 0 \]
C. \[\frac{2}{3} \]
D. \[x \left(\frac{2}{3} + 1 \right) \]

34. For the set for the school play, students are using a triangular board to make a mountain. To make sure the mountain will fit on the stage, they must know the length of the base. If the area of the board is 40 m\(^2\) and the height is 2 m taller than the length of the base, how long is the base of the board?

A. 6 m
B. 8 m
C. 10 m
D. 20 m

35. Which formula will allow you to solve a quadratic equation?

\[
A. x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\
B. x = \frac{b \pm \sqrt{b^2 - 4ac}}{2a} \\
C. x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\
D. x = \frac{b \pm \sqrt{-b - 4ac}}{2a}
\]

A. A
B. B
C. C
D. D
36. Find the equivalent form.

\[\sqrt{5} \times \sqrt{4} \]

A. \(\sqrt{20} \)
B. \(\sqrt{5} \)
C. \(\sqrt{1} \)
D. \(\frac{\sqrt{5}}{\sqrt{4}} \)

37. Find the corresponding option.

\[\sqrt{-36} \]

A. \(-6 \sqrt{6} \)
B. 6
C. Not a real number
D. \(-6 \)

A. A
B. B
C. C
D. D

38. Round to the nearest cent when necessary.

25 blank video tapes are on sale for $19.99.

How much does each video tape cost?

A. $0.78
B. $0.80
C. $1.25
D. $1.00
39. \[
\frac{15}{45} \times \frac{x}{3}
\]
If \(\frac{15}{45} = \frac{x}{3} \), then \(x \) is \(? \).

A. 45
B. 15
C. 1
D. 3

40. Solve for \(x \).

\[
\frac{2x}{3} + 7 = 9 + 11
\]

A. 3 1/3
B. 7 1/2
C. 40 1/2
D. -3 1/3

41. Find the solution.

\[
3(x + 1) = 2x + 10
\]

A. \(x = 13 \)
B. \(x = -13 \)
C. \(x = 7 \)
D. \(x = -7 \)

42. Mr. Rivera has a jar full of nickels, dimes, and quarters. There are three times as many nickels as there are dimes. There are 20 more quarters than dimes. The jar contains 56 quarters. How many nickels are there?

A. 116 nickels
B. 168 nickels
C. 228 nickels
D. 108 nickels

43. Average the following numbers: 250, 30, 855, 65, 780, 100, 45, 70, 115, 60.

A. 2370
B. 227
C. 234
D. 237
44. How many different teams of 3 students can be formed if you have 100 students to choose from?
 A. 161,700
 B. 300
 C. 323,400
 D. 1,000,000

45. Amelia is going to a drug store to do some shopping. She needs toothpaste, contact solution, and bar soap. There are fourteen different brands of toothpaste, 3 different brands of saline solution, and nine different brands of bar soap. How many different arrangements can Amelia choose from?
 A. 15 different arrangements
 B. 84 different arrangements
 C. 378 different arrangements
 D. 84 different arrangements

46. A group of 1,500 high school students were asked to fill out a questionnaire about their future career choices. The circle graph represents the results of the questionnaire. Use the circle graph to answer the question.

 How many students chose doctor as their career choice?
 A. 300 students
 B. 200 students
 C. 150 students
 D. 400 students
47. The Hawks and the Eagles are two hockey teams. This graph represents the attendance for each team. The attendance is given in thousands.

How many more people were at the Eagles' Game 1 than at the Hawks' Game 1?

A. 20,000
B. 10,000
C. 25,000
D. The same number of people attended both games.

48. There are 9 pieces of paper in a hat numbered 1 through 9. Kaleda needs to pick a 1, 2, 9, and 5 in order to win. The first, second, and third pieces of paper drawn are not replaced.

What are her chances of winning?

A. 1/6561
B. 1/36
C. 1/3024
D. 4/9

49. What is the range of the group of numbers?

8.6, 4.1, 8, 16.3, 11.4

A. 24.4
B. 24.2
C. 48.4
D. 12.2
50. Which of the following measures of central tendency is false?

A. median = 84.5
B. mean = 87
C. mode = 82
D. range = 23

51. The Board of Directors of a company has seven members who are all willing to serve as an officer. How many different ways can there be a President and Vice President elected?

A. 2!
B. 12!
C. 42
D. 35
52. Use the spinner to answer the question.

If you spin twice, how many times can you expect to spin a 9?
A. 0.22
B. 4.5
C. 0.25
D. 1.8

53. What is the average of the following numbers?
6, 5, 18, 21, 10, 9, 18, 20, and 1
A. 108
B. 12
C. 9
D. 54

54. If you were to draw a playing card from a standard deck, what is the probability of drawing an 8 of hearts?
A. 1/4
B. 3/26
C. 1/52
D. 1/13

55. If you were to draw a card from a standard deck, what is the probability of drawing a red queen?
A. 1/13
B. 1/26
C. 3/13
D. 1/52
56. Use the table to answer the question. Round to the nearest cent when necessary.

<table>
<thead>
<tr>
<th></th>
<th>Pencils</th>
<th>Pens</th>
<th>Folders</th>
<th>Binders</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORE A</td>
<td>12 for $1.10</td>
<td>12 for $1.50</td>
<td>3 for $0.90</td>
<td>$1.59 each</td>
</tr>
<tr>
<td>STORE B</td>
<td>10 for $0.90</td>
<td>10 for $1.25</td>
<td>5 for $1.15</td>
<td>2 for $3.00</td>
</tr>
<tr>
<td>STORE C</td>
<td>6 for $0.50</td>
<td>6 for $0.90</td>
<td>$0.25 each</td>
<td>3 for $5.00</td>
</tr>
<tr>
<td>STORE D</td>
<td>20 for $1.99</td>
<td>20 for $2.99</td>
<td>10 for $2.75</td>
<td>10 for $9.99</td>
</tr>
<tr>
<td>STORE E</td>
<td>$0.10 each</td>
<td>$0.15 each</td>
<td>15 for $3.75</td>
<td>5 for $5.00</td>
</tr>
<tr>
<td>STORE F</td>
<td>5 for $0.90</td>
<td>5 for $0.75</td>
<td>2 for $0.45</td>
<td>6 for $6.25</td>
</tr>
</tbody>
</table>

How much would one binder cost at Store F?
A. $1.00
B. $1.05
C. $1.04
D. $1.06

57. Find the value of the ? in the given statement.

57,000,000 = 5.7 \times 10^?

A. -8
B. -6
C. 8
D. 7

58. Arianna's father gave her $200. She spent $15.50 on gas for her car and $4.25 for lunch. With the remaining money Arianna needs to buy a gift for each of her 5 brothers.

How much money can Arianna spend on each gift?
A. $43.95
B. $180.25
C. $36.05
D. $1081.5
59. Cameron needs $\frac{4}{5}$ of a cup of chocolate chips for one recipe and $\frac{7}{9}$ of a cup for another recipe. Estimate how many cups of chocolate chips he will need.

A. $\frac{1}{2}$ cups
B. $\frac{1}{4}$ cups
C. $\frac{1}{2}$ of a cup
D. $\frac{3}{4}$ of a cup

60. Identify the angle.

A. obtuse angle
B. acute angle
C. right angle
61. Fill in the blank.

\[\angle QSM \text{ appears to be } \underline{\underline{\hspace{1cm}}}. \]

A. an obtuse angle
B. an acute angle
C. a right angle
D. a straight angle

62. What is the value of \(\angle X \)?

A. 68.2°
B. 111.8°
C. 81.3°
D. 98.7°

63. These two triangles are congruent.

\[\angle FDE \text{ is equal to } 110^\circ, \quad \angle DEF \text{ is equal to } 39^\circ. \text{ What is } \angle RST \text{ equal to?} \]

A. 110°
B. 31°
C. 70°
D. 39°
64. Fill in the blank.
Quadrilaterals ABCD and WXYZ are congruent.

Segment AB is congruent to segment ____.
A. CD
B. AC
C. YZ
D. WX

65. What are the coordinates of point A?

A. (-4, -3)
B. (-3, -4)
C. (-4, 3)
D. (-3, 4)
66. What is the ordered pair for point V?

A. (3, -3)
B. (3, 3)
C. (-3, 3)
D. (-3, -3)

67. Which of the options below is NOT a step toward finding the distance between point A (-5, -5) and point B (9, -4)?

A. squaring -14 and -1
B. adding 196 and 1
C. subtracting -9 from 5
D. adding 4 to -5

68. What shapes are in this figure?

A. rectangular prism and pyramid
B. pyramid and rectangle
C. cone and rectangle
D. rectangular prism and cone
69. Which equation best represents the graph?

A. \(y = \frac{1}{2} x \)
B. \(x = \frac{1}{2} y - 1 \)
C. \(x = \frac{1}{2} x - 1 \)
D. \(y = 2x \)

70. Name the polygon.

A. hexagon
B. decagon
C. pentagon
D. octagon

71. Which of the following statements is true?

A. All rhombuses are squares.
B. All rectangles are squares.
C. All squares are rectangles.
D. All parallelograms are rectangles.
72. Diagonal QS of rhombus QRST is 100 meters long.

![Diagram of rhombus QRST with diagonal QS labeled as 100 meters]

How long is segment US?
A. 50 meters
B. 100 meters
C. 25 meters
D. Information not provided.

73. A triangle has sides which are 6, 8, and 10 inches long. Which applied equation will prove that this triangle is or is not a right triangle?

A. \(3^2 + 4^2 = 10^2\)
B. \(6^2 + 8^2 = 10^2\)
C. \(6 + 8 = \sqrt{10}\)
D. \(90^\circ = 10^2 + 8^2 + 6^2\)

74. The equations of a translation are \(x' = 2 - x\) and \(y' = y - 3\). What is the translation of point K (-3, -1)?

A. (5, -2)
B. (-1, -4)
C. (-1, -2)
D. (5, -4)
75. What will the coordinates of point D be if the figure ABCD is rotated around point E so that point B is at (0, -5)?

A. (-3, -3)
B. (0, -1)
C. (3, -3)
D. (0, -5)

76. A right triangle has a second angle measuring 34°. What is the measure of the third angle?

A. 101°
B. 124°
C. 56°
D. 46°

77. The baseball field is 6 miles due west of Katie's house. The batting cages are due north of Katie's house. The diagonal distance from the baseball field to the batting cages is 10 miles. What is the shortest distance from Katie's house to the batting cages?

A. 4 miles
B. 16 miles
C. 2 miles
D. 8 miles
78. What is the area of a circle with a radius equal to 9 meters?
 A. 25.8 square meters
 B. 81 square meters
 C. 56.52 square meters
 D. 254.34 square meters

79. Find the area of the parallelogram.
 \[\text{Area} = \text{base} \times \text{height}\]
 \[17 \text{ m} \]
 \[5 \text{ m}\]
 A. 22 square meters
 B. 85 square meters
 C. 42.5 square meters
 D. 44 square meters

80. What is the area of a parallelogram with a base equal to 2.2 meters and a height equal to 3.3 meters?
 A. 72.6 square meters
 B. 5.5 square meters
 C. 7.26 square meters
 D. 55 square meters

81. Pilar wants to fill her rectangular garden with dirt. The garden is 70 meters long and 30 meters wide.

 What is the area of the garden?
 A. 2,100 square meters
 B. 100 square meters
 C. 200 square meters
 D. 1,050 square meters
82. What is the area of the trapezoid?

\[\text{Area} = \frac{1}{2} \times (21 \text{ m} + 8.1 \text{ m}) \times 28.2 \text{ m} \]

A. 10.877 square meters
B. 381.15 square meters
C. 592.2 square meters
D. 2,398.41 square meters

83. What is the area of a triangle with a base equal to 5.5 feet and a height equal to 10 feet?

A. 110 square feet
B. 55 square feet
C. 7.42 square feet
D. 27.5 square feet

84. What is the circumference of the circle?

\[\text{Circumference} = 2\pi r \]

A. 34.54 cm
B. 379.94 cm
C. 69.08 cm
D. 484 cm
85. The Acme Fencing Company built a fence around a rectangular yard. The yard is 12 meters wide and 45 meters long.

What is the perimeter of the yard?

A. 540 meters
B. 228 meters
C. 57 meters
D. 114 meters

86. This is a scale drawing of Lincoln Junior High School.

![Scale Drawing]

The scale used is 3.5 inches equals 7 feet. What is the actual length of the library?

A. 28 feet
B. 98 feet
C. 14 feet
D. 24.5 feet

87. Kim's aquarium holds 3.4 m³ of water. Its height and width are 1.5 m and 0.8 m, respectively. What is the length of the aquarium? Round your answer to the nearest tenth.

A. 2.3 m
B. 3.4 m
C. 1.2 m
D. 2.8 m
88. In July, the high temperature was 30°C. The low temperature was -9°C.

What was the average temperature for the month of July?

A. 19.5°C
B. -19.5°C
C. -10.5°C
D. 10.5°C

89. Larry is 13.5 years old.

Express Larry's age in months.

A. 81 months
B. 156.5 months
C. 702 months
D. 162 months

90. 5 yd 2 ft 9 in
 + 1 ft 7 in

A. 6 yd 1 ft 6 in
B. 6 yd 1 ft 4 in
C. 6.16 yd
D. 5 yd 1 ft 2 in

91. What is the volume of the cone? Round your answer if necessary.

\[\pi = 3.14 \]

A. 314 cubic meters
B. 104.7 cubic meters
C. 23,550 cubic meters
D. 113 cubic meters
92. What is the volume of the cylinder?

Round your answer to the nearest hundredth when necessary.

A. 339.12 cubic feet
B. 2,441.66 cubic feet
C. 678.24 cubic feet
D. 5,086.8 cubic feet

93. A pyramid with a square base has a volume of 320 cubic meters. Each side of the base measures 6 meters.

What is the height of the pyramid?

Round to the nearest whole number.

A. 27 meters
B. 80 meters
C. 3 meters
D. 12 meters

94. The volume of a rectangular prism is 300 cubic meters. The base has a length of 5 meters and a width of 6 meters.

What is the height of the prism?

A. 10 meters
B. 270 meters
C. 100 meters
D. 30 meters
95. | Triangular Face | Height | Volume of Prism |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>Height</td>
<td>of Prism</td>
</tr>
<tr>
<td>9.7 cm</td>
<td>6 cm</td>
<td>436.5 cm³</td>
</tr>
</tbody>
</table>

What is the height of the prism?
A. 15.7 cm
B. 15 cm
C. 378.3 cm
D. 210.4 cm

96. Which of the following numbers is greater than the others?
A. 1/2
B. 100%
C. 3/4
D. 0.9

97. Find another way to write:
\[
\frac{8}{25}
\]
A. 1/4
B. 25%
C. 32%
D. 258%

98. Which of the following is another way to write 0.75?
A. 1/75
B. 3/4
C. 1/4
D. 75/10

99. Which of the following is another way to write 8.3?
A. 24/3
B. 8/3
C. 83/100
D. 8 3/10
100. Put the following numbers in order from least to greatest.

\[0.5, \frac{10}{2}, 0.5\% \]

A. \(0.5\%, 0.5, \frac{10}{2} \)
B. \(0.5\%, \frac{10}{2}, 0.5 \)
C. \(\frac{10}{2}, 0.5, 0.5\% \)
D. \(0.5, 0.5\%, \frac{10}{2} \)

A. 53.8
B. 0.1325
C. 7.546
D. 54.607

102. Jake wants to take Meghan to the movies. He has a coupon for a 20\% discount on two movie tickets. The price for one movie ticket is $7.75.

How much is Jake's discount on the two movie tickets?

A. $12.40
B. $6.20
C. $3.10
D. $1.55
103. A skateboard store is having a sale. The discount is 23% on all items.

If the original price of a skateboard is $368.53, what is the sale price?

A. $34.36
B. $283.77
C. $358.40
D. $84.76

104. Which choice best describes the following?

\[f(x) = x^2 + 3x - 4 \]

A. Axis of symmetry at \(x = -\frac{3}{2} \)
B. Opens up
C. A parabola
D. A quadratic function

105. Choose the symbol that replaces the question mark (?).

\[-8(-144 + 6) \quad ? \quad -2(1320 + -12) \]

A. =
B. >
C. <

106. Choose the symbol to replace the question mark.

\[(-9 - -17) + 12 \quad ? \quad (-10 + 30) \]

A. =
B. <
C. >

107. \((-6 \times -2) \times (4 + -2) =\)

A. -24
B. -16
C. 24
D. 16
108. In addition to presents, Sheri and Brian received $4,300.00 for their wedding from the 300 guests that attended. They deposited it into a money-market savings account which pays 6.1% interest per year. They have been married for 18 months. How much money is currently in their account?

A. $4,721.40
B. $4,693.45
C. $8,234.50
D. $9,021.40

109. Juan Martinez's income is $2,887.50 per month. If Juan's student loans are $10,000.00 tax free, how long will it take him to pay the loans off?

- 12.5% Student Loans
- 25% Car Payments
- 5% Utilities
- 27% Entertainment
- 18% Miscellaneous

A. 27 months
B. 28 months
C. 13 months
D. 14 months

110. A quality snowboard rents for $50.00 a day at ski lodges. You can purchase a snowboard for $650.00. You can pay that amount in cash, or you can choose a credit plan and pay a $150.00 down payment and then 24 monthly installments of $25.00. How much more will you pay for the snowboard if you choose the credit plan?

A. $100.00
B. $200.00
C. $700.00
D. The two options equal the same amount.

111. Janine and Billy need to borrow $25,500 to buy a new boat. They want to borrow the money for three years at a yearly interest rate of 18%.

How much interest will they pay?

A. $47,222
B. $14,166
C. $13,770
D. $4,590
112. Mahar went to an amusement park with his younger brother and sister. Mahar's ticket cost $32 because he is 17 years old. Each of the other tickets cost $25. For lunch they had hamburgers and drinks totaling $15.64. As they were leaving the park, each of his siblings asked for a keepsake. If Mahar began the day with $125.00, how much money was left for keepsakes?

A. $52.36
B. $27.36
C. $97.64
D. Mahar did not have any money left.
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>46.</td>
<td>A</td>
<td>Graphs (Circle) - C</td>
<td></td>
</tr>
<tr>
<td>47.</td>
<td>D</td>
<td>Graphs (Line) - C</td>
<td></td>
</tr>
<tr>
<td>48.</td>
<td>C</td>
<td>Independent/Dependent Events</td>
<td></td>
</tr>
<tr>
<td>49.</td>
<td>D</td>
<td>Mean/Median/Mode/Range - A</td>
<td></td>
</tr>
<tr>
<td>50.</td>
<td>A</td>
<td>Mean/Median/Mode/Range - B</td>
<td></td>
</tr>
<tr>
<td>51.</td>
<td>C</td>
<td>Permutations</td>
<td></td>
</tr>
<tr>
<td>52.</td>
<td>C</td>
<td>Predictions</td>
<td></td>
</tr>
<tr>
<td>53.</td>
<td>B</td>
<td>Probability/Statistics - A</td>
<td></td>
</tr>
<tr>
<td>54.</td>
<td>C</td>
<td>Probability/Statistics - B</td>
<td></td>
</tr>
<tr>
<td>55.</td>
<td>B</td>
<td>Probability/Statistics - C</td>
<td></td>
</tr>
<tr>
<td>56.</td>
<td>C</td>
<td>Tables - F</td>
<td></td>
</tr>
<tr>
<td>57.</td>
<td>D</td>
<td>Scientific Notation</td>
<td></td>
</tr>
<tr>
<td>58.</td>
<td>C</td>
<td>Story Problems: Decimals</td>
<td></td>
</tr>
<tr>
<td>59.</td>
<td>A</td>
<td>Fractions: Estimation - B</td>
<td></td>
</tr>
<tr>
<td>60.</td>
<td>A</td>
<td>Angles - A</td>
<td></td>
</tr>
<tr>
<td>61.</td>
<td>C</td>
<td>Angles - B</td>
<td></td>
</tr>
<tr>
<td>62.</td>
<td>B</td>
<td>Angles - C</td>
<td></td>
</tr>
<tr>
<td>63.</td>
<td>A</td>
<td>Congruence (SAS/ASA)</td>
<td></td>
</tr>
<tr>
<td>64.</td>
<td>D</td>
<td>Congruency - B</td>
<td></td>
</tr>
<tr>
<td>65.</td>
<td>A</td>
<td>Coordinate Geometry - C</td>
<td></td>
</tr>
<tr>
<td>66.</td>
<td>A</td>
<td>Coordinate Geometry - D</td>
<td></td>
</tr>
<tr>
<td>67.</td>
<td>C</td>
<td>Distance Formula</td>
<td></td>
</tr>
<tr>
<td>68.</td>
<td>A</td>
<td>Figures - D</td>
<td></td>
</tr>
<tr>
<td>69.</td>
<td>A</td>
<td>Graphing Equations - A</td>
<td></td>
</tr>
<tr>
<td>70.</td>
<td>D</td>
<td>Polygons - A</td>
<td></td>
</tr>
<tr>
<td>71.</td>
<td>C</td>
<td>Polygons - B</td>
<td></td>
</tr>
<tr>
<td>72.</td>
<td>A</td>
<td>Polygons - C</td>
<td></td>
</tr>
<tr>
<td>73.</td>
<td>B</td>
<td>Pythagorean Theorem</td>
<td></td>
</tr>
<tr>
<td>74.</td>
<td>D</td>
<td>Spatial Relationships - B</td>
<td></td>
</tr>
<tr>
<td>75.</td>
<td>B</td>
<td>Transformation</td>
<td></td>
</tr>
<tr>
<td>76.</td>
<td>C</td>
<td>Triangles - B</td>
<td></td>
</tr>
<tr>
<td>77.</td>
<td>D</td>
<td>Triangles - C</td>
<td></td>
</tr>
<tr>
<td>78.</td>
<td>D</td>
<td>Area of Circle</td>
<td></td>
</tr>
<tr>
<td>79.</td>
<td>B</td>
<td>Area of Parallelogram - A</td>
<td></td>
</tr>
<tr>
<td>80.</td>
<td>C</td>
<td>Area of Parallelogram - B</td>
<td></td>
</tr>
<tr>
<td>81.</td>
<td>A</td>
<td>Area of Rectangle - D</td>
<td></td>
</tr>
<tr>
<td>82.</td>
<td>B</td>
<td>Area of Trapezoid</td>
<td></td>
</tr>
<tr>
<td>83.</td>
<td>D</td>
<td>Area of Triangle</td>
<td></td>
</tr>
<tr>
<td>84.</td>
<td>C</td>
<td>Circumference - B</td>
<td></td>
</tr>
<tr>
<td>85.</td>
<td>D</td>
<td>Perimeter - C</td>
<td></td>
</tr>
<tr>
<td>86.</td>
<td>A</td>
<td>Scale Drawing</td>
<td></td>
</tr>
<tr>
<td>87.</td>
<td>D</td>
<td>Story Problem: Measurement Procedures</td>
<td></td>
</tr>
<tr>
<td>88.</td>
<td>D</td>
<td>Temperature - D</td>
<td></td>
</tr>
<tr>
<td>89.</td>
<td>D</td>
<td>Time - C</td>
<td></td>
</tr>
<tr>
<td>90.</td>
<td>B</td>
<td>Units of Measurement - D</td>
<td></td>
</tr>
<tr>
<td>91.</td>
<td>D</td>
<td>Volume of Cone</td>
<td></td>
</tr>
<tr>
<td>92.</td>
<td>B</td>
<td>Volume of Cylinders</td>
<td></td>
</tr>
<tr>
<td>93.</td>
<td>A</td>
<td>Volume of Pyramids</td>
<td></td>
</tr>
<tr>
<td>94.</td>
<td>A</td>
<td>Volume of Rectangular Prisms</td>
<td></td>
</tr>
<tr>
<td>95.</td>
<td>B</td>
<td>Volume of Triangular Prism</td>
<td></td>
</tr>
</tbody>
</table>
Answer Key

1. C Absolute Value
2. A Conversion: Variable Expressions/Words
3. B Equations: Addition/Subtraction
4. D Equations: Multiplication/Division
5. D Equations: Order of Operations
6. D Equations: Systems
7. D Equations: Two Variables
8. D Equations: Two-Step
9. B Equations: Writing
10. D Exponential Notation - A
11. C Exponential Notation - B
12. D Exponential Notation - C
13. B Exponential Notation - D
14. B Exponential Notation - E
15. B Expressions: Addition
16. C Expressions: Division
17. A Expressions: Evaluating & Simplifying
18. C Expressions: Multiplication
19. A Expressions: Story Problems
20. D Expressions: Subtraction
21. B Function/Pattern - C
22. C Functions: Linear
23. A Inequalities - A
24. A Inequalities - B
25. C Missing Elements - C
26. D Missing Elements - D
27. C Missing Elements - E
28. A Number Relation Problems
29. A Polynomials: Addition
30. B Polynomials: Division
31. D Polynomials: Multiplication
32. C Polynomials: Subtraction
33. A Properties - E
34. B Quadratic Equations: Real World Problems
35. C Quadratic Formula
36. A Radicals and Roots
37. C Radicals: Simplifying
38. B Rates
39. C Ratio/Proportion - C
40. B Rational Numbers: Equations
41. C Sets/Subsets/Solution Sets
42. D Story Problems
43. D Averaging Numbers
44. A Combinations
45. C Counting the Choices
96. B Comparison
97. C Equivalent Forms: Dec./Fract./Percent
98. B Equivalent Forms: Decimal/Fraction
100. A Order Numbers: Fractions/Dec./Percents
101. D Percent of a Number
102. C Story Problems Percents - A
103. B Story Problems Percents - B
104. D Evaluating Solutions - A
105. C Dividing Integers
106. A Integers: Multiple-step Computation
107. A Multiplying Integers
108. B Banking
109. B Budget: Creation/Application
110. A Credit
111. C Discount/Tax/Interest/Commission
112. B Spending