1. What is the value of m?

 $m + (7.8 - 1.2) = 54.2$

 A. -47.6
 B. 45.2
 C. 47.6
 D. 60.8

2. Solve for m.

 $6m = -\frac{1}{3}$

 A. $m = 2$
 B. $m = -2$
 C. $m = -1/18$
 D. $m = -18$

3. Choose the equation you could use to solve this problem.

 Jenny had 3 times as many pieces of candy as Mike. Rita had 22 more pieces than Jenny. Mike had 17 pieces of candy. How many pieces of candy does Rita have?

 A. $3n + 22 = 17$
 B. $n = (3 \times 22) + 17$
 C. $n = (3 \times 17) + 22$
 D. $3n + 17 = 22$
4. For $x = -10$, find $36 + x$.

A. -26
B. 26
C. -46
D. 46

5. Evaluate the expression for $y = -12$.

$$\frac{y}{4} - y$$

A. 15
B. -15
C. 9
D. -9

6. Determine the value of the question (?) mark.

$$n = 6$$

$$\frac{1}{3} (4n) = ?$$

A. 24
B. 18
C. 16
D. 8

7. The maximum speed of a Fly-By-Night airplane is 346 miles per hour faster than a Soaring-Wing airplane. The sum of their speeds is 889 miles per hour.

What is the maximum speed of a Fly-By-Night airplane?

A. 271.5 miles per hour
B. 617.5 miles per hour
C. 543 miles per hour
D. 1,235 miles per hour
8. The numbers in Column A have been changed to the numbers in Column B by using a specific rule.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>9</td>
</tr>
<tr>
<td>63</td>
<td>7</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
</tr>
</tbody>
</table>

Which number sentence shows that rule?

A. \(A \div 9 = B \)
B. \(A + 9 = B \)
C. \(A \times 9 = B \)
D. \(A \times 3 = B \)

9. \(\triangle \) is to \(\square \) as \(\blacklozenge \) is to ___.
Choose one of the following to complete the sentence.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
</table>

A. A
B. B
C. C
D. D
10. Which series of shapes would come next in the pattern?

A.
B.
C.
D.

11. Four kids were throwing a party. They each wanted to invite 12 people. One of the friends said that they would need 48 invitations because \(12 \times 4 = 48\). Another friend said she thought they needed fewer invitations than 48. They decided to try to prove that \(12 \times 4 = 48\). Which friend is correct?

A. Carmen said that \(12 \times 4 = 48\) is true because \(48 - 4 = 44\).
B. Jose said that \(12 \times 4 = 48\) is true because \(48 \div 4 = 12\).
C. Meryl said that \(12 \times 4 = 48\) is true because \(12 - 4 = 8\).
D. Kelly said that \(12 \times 4 = 48\) is true because \(12 \div 4 = 3\).

12. Which number completes both of the number sentences?

\[8 \times ? = 104\]
\[104 \div ? = 8\]

A. 8
B. 96
C. 65
D. 13
13. Find the operational symbol.

\[23 \ ? \ 64 = 1,472 \]

A. \(x \)
B. \(+ \)
C. \(- \)
D. \(\div \)

14. Find the missing symbol.

\[23 \ _ \ 47 = -24 \]

A. \(+ \)
B. \(- \)
C. \(x \)
D. \(\div \)

15. Find the missing number in the pattern.

\[10, 11, 14, 19, ___, 35, 46 \]

A. 25
B. 26
C. 27
D. 28

16. Solve.

\[9 + [(12 \div 3) + (4 \times 2)] = \]

A. 21
B. 22
C. 10
D. 34
17. What is the value of the given statement?

\[
\frac{2}{3} \times \left(\frac{4}{5} \times \frac{35}{12} \right) = ?
\]

A. 1 5/9
B. 4 2/3
C. 2
D. 14

18. Which one of the following best completes the number sentence?

\[
\left(\frac{4}{9} \right)^? = \frac{4}{9}
\]

A. \(\times \frac{1}{3}\)
B. \(\times \frac{2}{3}\)
C. \(\times \frac{2}{3}\)
D. \(\times \frac{4}{3}\)

19. Round to the nearest cent when necessary.

14 bagels cost $4.98.

How much does one bagel cost?

A. $0.36
B. $0.42
C. $1.25
D. $0.12
20. The team manager just opened a shipment of uniforms. There are 14 winter uniforms and 17 summer uniforms.

What is the ratio of winter uniforms to summer uniforms?

A. 17:14
B. 31:14
C. 17:31
D. 14:17

21. Which symbol would make this proportion true?

\[
\frac{7}{9} \quad ? \quad \frac{3}{4}
\]

A. =
B. <
C. >

22. Solve for x.

\[10 = -x + 8 - 12\]

A. 2
B. -6
C. 30
D. -14

23. Franklin had 46 jelly beans. He ate half of the jelly beans. He gave some more to his friend. He now has 10 jelly beans.

How many did he give to his friend?

A. 11 jelly beans
B. 10 jelly beans
C. 13 jelly beans
D. 15 jelly beans
24. Average the following numbers: 88, 144, 152, 112, 48, 136, 72, 16.

A. 96
B. 87
C. 768
D. 696

25. There are 8 students trying out for the chess team. Two students will be chosen for the team. How many different combinations of the students can there be?

A. 56
B. 64
C. 336
D. 28

26. Use the line graph to answer the question.

Which month did Toysmart sell the most toys?

A. June
B. August
C. December
D. November
27. Use the line graph to answer the question.

How many children sold more than 200 magazines?
A. 3 children
B. 1 child
C. 2 children
D. 0 children

28. What is the median of the group of numbers?
4, 8, 3, 12, 19, 11, 2
A. 8
B. 59
C. 8.43
D. 17

29. At a family garage sale, a table displayed 15 pieces of used sporting equipment. The marked prices were as follows:
 $2, $5, $2, $8, $10
 $10, $15, $1, $1, $1
 $3, $20, $10, $8, $10
What price represents the mode?
A. $1
B. $10
C. $8
D. $2
30. Find the value of n in the table.

<table>
<thead>
<tr>
<th>Number of chairs in a row</th>
<th>Number of people to sit in the chairs</th>
<th>Number of arrangements</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>n</td>
</tr>
</tbody>
</table>

A. 120
B. 60
C. 15
D. 30

31. What is the average of the following numbers?

4, 12, 8, 2, 6, and 10

A. 6
B. 42
C. 48
D. 7

32. Mike conducted a poll to see how many people liked the food served in the cafeteria. In the poll, Mike found that 13 of the 125 people polled liked the food.

If there are 700 people in the school, how many people can Mike expect to like the food?

A. 73 people
B. 70 people
C. 588 people
D. 5.6 people

33. Avalon and her friends collect baseball cards. If they have 56, 32, 60, 10, and 27 cards, what is the average number of baseball cards in the group?

A. 185 baseball cards
B. 37 baseball cards
C. 46 baseball cards
D. 32 baseball cards
34. Use the table to answer the question.

<table>
<thead>
<tr>
<th>Room</th>
<th>Math Books</th>
<th>Spelling Books</th>
<th>Reading Books</th>
<th>Science Kits</th>
<th>Computers</th>
<th>TV VCRs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room A</td>
<td>10</td>
<td>22</td>
<td>13</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Room B</td>
<td>27</td>
<td>18</td>
<td>19</td>
<td>9</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Room C</td>
<td>19</td>
<td>19</td>
<td>27</td>
<td>16</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Room D</td>
<td>20</td>
<td>15</td>
<td>19</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Room E</td>
<td>13</td>
<td>16</td>
<td>21</td>
<td>9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Room F</td>
<td>15</td>
<td>19</td>
<td>30</td>
<td>15</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

How many more reading textbooks does room C have than room A?
A. 14 reading textbooks
B. 13 reading textbooks
C. 40 reading textbooks
D. 15 reading textbooks

35. Erika lives in San Diego and wants to visit Omaha. According to the tree diagram, which is the best option?

A. San Diego-Phoenix-Omaha
B. San Diego-Miami-Omaha
C. San Diego-Dallas-Omaha
D. San Diego-Los Angeles-Omaha
36. Sal weighs 32.4 pounds.
 David weighs 40.1 pounds.

 How much do Sal and David weigh together?

 A. 6.3 pounds
 B. 72.5 pounds
 C. 8.41 pounds
 D. 324.01 pounds

37. Jim and Henry were searching in the freezer for ice cream. They found 1.243 quarts of chocolate chip
 ice cream and 2.54 pints of strawberry ice cream.

 How many pints of ice cream did they find in all?

 A. 14.97 pints
 B. 3.54 pints
 C. 1.497 pints
 D. 3.783 pints

38. The following graph shows the number of grams of protein in different three-ounce samples of chicken
 breast meat.

Chicken Sample	Protein (in g)
1	27.179
2	27.2
3	27.21
4	27.205

 Which chicken sample had the greatest amount of protein?

 A. Sample 3
 B. Sample 2
 C. Sample 4
 D. Sample 1

39. 76.23 ÷ 0.6 =

 A. 127 R3
 B. 45.738
 C. 127.05
 D. 1.27 R5

Test Set #6 - Page 12
40. Jackie painted her neighbor's house for 15.5 hours. She earned $38.75.

How much money did Jackie earn an hour?

A. $2.50 per hour
B. $25.00 per hour
C. $2.55 per hour
D. $.255 per hour

41. Patricia earns $9.23 an hour at her new job. She worked 7 hours on Friday night.

How much money did she earn on Friday night?

A. $9.30
B. $16.23
C. $64.61
D. $63.16

42. \[27.6873 - (14.8621 + 2.119) = \]

A. 10.7062
B. 14.9442
C. 44.6684
D. 16.9811

43. \[24.467 \times (7.15 \div 2.5) = \]

A. 376.1189575
B. 0.3761189575
C. 69.7562
D. 69.97562

44. What does the digit 1 mean in 92.51?

A. hundredths
B. tenths
C. hundreds
D. thousandths

Test Set #6 - Page 13
45. In what place is the underlined digit?

17.34343

A. millionths
B. thousandths
C. ten thousandths
D. hundred thousandths

46. Jared drank 2.7 cups of water during his hike. After his hike was over, he drank 3.5 cups of water. How much water did Jared drink?

A. 0.8 cups
B. 1.2 cups
C. 6.2 cups
D. 5.2 cups

47. Marta had a double dip ice cream cone.
It was 11.3 centimeters tall.
After Marta ate the top scoop, the ice cream cone was only 8.2 centimeters tall.

How much of the ice cream did Marta eat?

A. 8.2 centimeters
B. 11.3 centimeters
C. 19.5 centimeters
D. 3.1 centimeters

48. Tammie earned $67.98 babysitting. Her brother earned $46.97 watering lawns.

How much more money did Tammie earn than her brother?

A. $114.95
B. $11.49
C. $21.01
D. $22.00

49. Trent bought 12.745 gallons of punch for his party. His guests drank 5.945 gallons of punch.

How many gallons of punch did Trent have left over?

A. 6.8 gallons
B. 5.3295 gallons
C. 6.08 gallons
D. 0.5329 gallons
50. Jamie ate $\frac{2}{5}$ of the pie. Casey also ate $\frac{2}{5}$ of the pie.

How much of the pie did Jamie and Casey eat?

A. $\frac{4}{5}$ of the pie
B. $\frac{2}{10}$ of the pie
C. $\frac{2}{5}$ of the pie
D. $\frac{4}{10}$ of the pie

51. Samantha drank $5 \frac{3}{5}$ glasses of orange juice. Alfonso drank $3 \frac{2}{3}$ glasses of pineapple juice. How many glasses of juice did Samantha and Alfonso drink in all? Reduce the answer to lowest terms.

A. $\frac{8}{8}$ glasses of juice
B. $\frac{9}{15}$ glasses of juice
C. $\frac{2}{2}$ glasses of juice
D. $\frac{19}{30}$ glasses of juice
52. What number completes the blank?

\[
\frac{3}{3} \quad \frac{5}{3}
\]

A. \(\frac{4}{3} \)

B. \(\frac{3}{4} \)

C. \(\frac{3}{6} \)

D. \(\frac{6}{3} \)

53. Reduce answer to lowest terms.

\[
\frac{4}{9} + \frac{4}{5} =
\]

A. \(\frac{5}{9} \)

B. \(\frac{16}{45} \)

C. \(\frac{1}{45} \)

D. \(\frac{8}{14} \)
54. Reduce all fractions to lowest terms.

\[
\frac{33 + \frac{11}{17}}{17} = \quad \text{A.} \quad 21 \frac{6}{17} \\
\text{B.} \quad 51 \\
\text{C.} \quad \frac{1}{51} \\
\text{D.} \quad \frac{17}{363}
\]

55. Haden bought \(3\frac{3}{4}\) quarts of paint to paint picture frames. If each frame takes \(\frac{5}{8}\) of a quart of paint, how many frames can Haden paint?

\[\text{A.} \quad 3\frac{1}{8} \text{ frames} \]
\[\text{B.} \quad 2\frac{11}{32} \text{ frames} \]
\[\text{C.} \quad \frac{1}{6} \text{ of a frame} \]
\[\text{D.} \quad 6 \]
56. Bud has \(\frac{7}{10} \) of a cake left. Two of his friends are over for dessert. Estimate how much cake each of them, including Bud, will get.

A. \(\frac{1}{2} \) of the cake

B. \(\frac{1}{4} \) of the cake

C. \(\frac{3}{4} \) of the cake

D. \(1\frac{1}{4} \) of the cake

57. Which of the following statements is true?

A. \(\frac{4}{2} = 8 \)

B. \(\frac{6}{7} > \frac{42}{7} \)

C. \(\frac{12}{7} > 2\frac{5}{7} \)

D. \(2\frac{18}{9} = 4 \)
60. Reduce answer to lowest terms.

\[\frac{5\frac{2}{9}}{3} \times \frac{8\frac{3}{8}}{8} = \]

A. \[43 \frac{53}{72} \]

B. \[40 \frac{6}{72} \]

C. \[40 \frac{1}{12} \]

D. \[376 \frac{603}{603} \]

61. Cindy had \(\frac{6}{7} \) of a cup of flour. She used \(\frac{2}{7} \) of a cup of flour for her cookies. How much flour does she have left? Reduce your answer to lowest terms.

A. \[\frac{9}{7} \text{ cups} \]

B. \[\frac{4}{7} \text{ of a cup} \]

C. \[\frac{3}{7} \text{ of a cup} \]

D. \[\frac{9}{14} \text{ of a cup} \]
62. Identify the angle.

A. obtuse angle
B. acute angle
C. right angle

63. Fill in the blank.

\(\angle \text{RSM} \) appears to be ________________.

A. an obtuse angle
B. an acute angle
C. a right angle
D. a straight angle

64. What is the value of \(x \)?

A. 122°
B. 60°
C. 30°
D. 118°
65. How many lines of symmetry does a square have?
 A. 1 line
 B. 2 lines
 C. 3 lines
 D. 4 lines

66. Where is point B?

 A. over 5, up 3
 B. over 4, up 3
 C. over 4, up 4
 D. over 3, up 3

67. What letter names the ordered pair (5, 5)?

 A. A
 B. B
 C. C
 D. D
68. What are the coordinates of point A?

A. (2, 2)
B. (2, -2)
C. (-2, 2)
D. (-2, -2)

69. What letter is at point (-2, -3)?

A. A
B. B
C. C
D. D
70. What shapes are in this figure?

A. cone and rectangle
B. rectangular prism and cube
C. cube and rectangle
D. rectangular prism and block

71. Which pair of lines is perpendicular?

[Diagram with four sets of lines, marked A, B, C, D]

A. A
B. B
C. C
D. D

72. Which choice best completes the statement?
A hexagon is...

A. a polygon with four sides.
B. a polygon with six sides.
C. a polygon with eight sides.
D. a polygon with ten sides.
73. What type of polygon is pictured below?

![Hexagon]

A. hexagon
B. quadrilateral
C. octagon
D. pentagon

74. Fill in the blank.

A ___________ is a quadrilateral that has exactly one pair of parallel sides.

A. rhombus
B. trapezoid
C. parallelogram
D. octagon

75. Choose the coordinates of the point that is the reflection over the y-axis of the point M (4, -6).

A. (-4, -6)
B. (4, 6)
C. (-4, 6)
D. (4, -6)

76. Which of these figures can be folded on the dotted line so that each part matches?

[Images of figures A, B, C]

A. A
B. B
C. C
77. How many lines of symmetry are there in the following figure?

A. 2
B. 4
C. 6
D. 8

78. What type of triangle is pictured below?

A. equilateral triangle
B. right triangle
C. isosceles triangle
D. obtuse triangle

79. What is the area of the figure?

A. 1,350 square meters
B. 210 square meters
C. 675 square meters
D. 2,700 square meters
80. What is the area of a parallelogram with a base equal to 100 inches and a height equal to 100 inches?

A. 10,000 square inches
B. 1,000 square inches
C. 100,000 square inches
D. 400 square inches

81. What is the area of this figure?

\[\text{13 ft} \quad \text{27 ft} \]

A. 40 square feet
B. 351 square feet
C. 80 square feet
D. 257 square feet

82. What is the area of the rectangle?

\[\text{19 mm} \quad \text{8 mm} \]

A. 27 square millimeters
B. 152 square millimeters
C. 76 square millimeters
D. 54 square millimeters

83. What is the area of this figure?

\[\text{32.3 ft} \quad \text{11.2 ft} \]

A. 361.76 square feet
B. 43.5 square feet
C. 371.84 square feet
D. 87 square feet
84. What is the area of a rectangle that is 72.5 feet long and 18.9 feet wide?
 A. 182.8 square feet
 B. 685.125 square feet
 C. 91.4 square feet
 D. 1,370.25 square feet

85. Find the area.

 \[A = \frac{1}{2} \times b \times h \]

 A. 72 square inches
 B. 7.5 square inches
 C. 18 square inches
 D. 36 square inches

86. 3.5 ft = ? in
 A. 42 in
 B. 35 in
 C. 126 in
 D. 63 in

87. Which of the following is the best estimate for how much a pen weighs?
 A. 200 kilograms
 B. 100 pounds
 C. 10 tons
 D. 10 grams

88. How many kilograms are equal to 5,000 grams?
 A. 5 kilograms
 B. 50 kilograms
 C. 500 kilograms
 D. 5,000 kilograms
89. \[4360 \text{ g} = \underline{?} \text{ kg}\]
 A. 43.6
 B. 4.36
 C. 436
 D. 0.436

90. This is a scale drawing of Lincoln Junior High School.

The scale used is 3.5 inches equals 7 feet. What is the actual width of the restrooms?
 A. 49 feet
 B. 24.5 feet
 C. 21 feet
 D. 14 feet

91. At eight o'clock this morning, the temperature outside was 7° C. By noon, the temperature had risen 9 degrees.

What was the temperature at noon?
 A. 2° C
 B. -16° C
 C. -2° C
 D. 16° C

92. Penny is going to fly her plane to her sister's house, which is 544.32 miles away. Penny's airplane flies at an average speed of 672 miles per hour.

How long does it take Penny to fly to her sister's house?
 A. 49 minutes 58 seconds
 B. 60 minutes 96 seconds
 C. 54 minutes 3 seconds
 D. 48 minutes 36 seconds
93. Which of the following statements is true?
 A. 100 meters = 1 centimeter
 B. 1,000 meters = 1 kilometer
 C. 1 meter = 100 millimeters
 D. 1 centimeter = 1,000 millimeters

94. Janet swam 120 feet. How many yards did she swim?
 A. 40 yards
 B. 30 yards
 C. 12 yards
 D. 10 yards

95. Solve:

 \[2 \text{ km} = ? \text{ m} \]

Hint:
1 kilometer (km) = 1,000 meters (m)
1 hectometer (hm) = 100 meters
1 dekameter (dam) = 10 meters

 A. 2
 B. 20
 C. 2,000
 D. 200

96. Donald bought 3 loaves of bread. Each loaf of bread weighed 14 ounces. How many pounds of bread did Donald buy?
 A. 1 lb 10 oz
 B. 2 lbs
 C. 3 lbs
 D. 2 lbs 10 oz

97. What is the volume of a figure that is 21 inches long, 3 inches wide, and 13 inches high?
 A. 111 cubic inches
 B. 37 cubic inches
 C. 1,638 cubic inches
 D. 819 cubic inches
98. What is the volume of a block that is 9.8 meters long, 8.9 meters wide and 8 meters high?
 A. 90.8 cubic meters
 B. 768.32 cubic meters
 C. 697.76 cubic meters
 D. 26.7 cubic meters

99. The volume of a rectangular prism is 450 cubic centimeters. The base is 10 centimeters long and the height is 5 centimeters.
 What is the width of the prism?
 A. 435 centimeters
 B. 400 centimeters
 C. 9 centimeters
 D. 50 centimeters

100. Which of the following could be the value of y?

 \[78\% = y\]
 A. 39/50
 B. 7.8
 C. 7/8
 D. 780

101. Which of the following is another way to write 0.77?

 A. 77%
 B. 7/10
 C. 77/1000
 D. 7.7%

102. Find another way to write 1/4.

 A. 0.04
 B. 2.5
 C. 0.4
 D. 0.25
103. Which of the following is another way to write 5.5?
 A. 5 5/100
 B. 5 5/10
 C. 55/100
 D. 55/10

104. Use the number line to solve the equation:

\[\text{point } X + 5 = \]
 A. 84
 B. 80
 C. 88
 D. 85

105. Add 1 to point X.

\[\text{point } X + 1 = \]
 A. 6.3
 B. 5.4
 C. 6.2
 D. 5.2

106. Which of the following formulas should you use to estimate 591 x 203?
 A. 600 x 300
 B. 500 x 200
 C. 500 x 300
 D. 600 x 200

107. Round 9,816.54712 to the nearest tenth.
 A. 9,816.6
 B. 9,816.55
 C. 9,820
 D. 9,816.5
108. Which of the following formulas would you use to estimate $87.877 + 34.84$ to the nearest tenth?

A. $87.8 + 34.8$
B. $87 + 35$
C. $87.9 + 34.8$
D. $88 + 34.8$

109. Calvin wants to borrow $6,250$ to buy a new motorcycle. He wants to borrow the money for 5 years at a simple interest rate of 11% per year.

How much interest will Calvin pay over the five years?

A. $3,437.50$
B. $9,687.50$
C. 343.75
D. $6,593.75$

110. Reading at a rate of 5 minutes per page, how much time will it take Joe to read all 10 of his books, each containing 90 pages? Choose the best answer.

A. 27,000 seconds
B. 450 minutes
C. 75 hours
D. about 1/4 of a day

111. $-18 + 6 =$

A. -12
B. 12
C. 24
D. -24

112. $-48 \div -8 =$

A. 6
B. -384
C. -6
D. 384
113. Choose the symbol to replace the question mark.

\[-66 \ ? \ |35 + 31|\]

A. >
B. <
C. =

114. \((98)(-23) = \)

A. 2254
B. -2254
C. 490
D. -490

115. Several people are waiting in line for a movie. If you take the number of people in line, add \(-3\), multiply by \(-1\), and divide by \(-6\), the result is \(2\).

How many people are waiting in line for the movie?

A. 4.5
B. 2
C. 11
D. 15

116. \(63 - 25 = \)

A. 38
B. -38
C. 88
D. -88

117. Which of the following statements is true?

A. \(12 < -13\)
B. \(6 > -6\)
C. \(-66 > 66\)
D. \(-10 > -5\)
118. Start with 66 players. 6 players per team.

How many teams?

A. 10 teams
B. 11 teams
C. 12 teams
D. 13 teams

119. The Jimenez family bought 45 gallons of paint to paint their house. They painted 4 rooms with an equal amount of paint.

How many gallons of paint were left over?

A. 1 gallon
B. 4 gallons
C. 0 gallons
D. 3 gallons

120. There are 95,568 seats in the stadium. Each row of seats contains 24 seats.

How many rows of seats are there in the stadium?

A. 3,982 rows of seats
B. 2,293,632 rows of seats
C. 4,065 R8 rows of seats
D. 3,098 R2 rows of seats

121. Which of the following numbers is divisible by 4 and 9?

A. 81
B. 13
C. 5
D. 36

122. \((36 + 17) - (42 + 2) =\)

A. 97
B. 9
C. 10
D. 96
123. \((189 \div 21) \times (168 \div 56) =\)
 A. 3
 B. 27
 C. 28
 D. 12

124. Which of the following shows 14 as a sum of prime numbers?
 A. 7 + 7
 B. 10 + 4
 C. 5 + 5 + 4
 D. 2 + 12

125. Identify the following number as either prime or composite.

 39
 A. prime
 B. composite
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Answer Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>C</td>
<td>Equations: Addition/Subtraction</td>
</tr>
<tr>
<td>2.</td>
<td>C</td>
<td>Equations: Multiplication/Division</td>
</tr>
<tr>
<td>3.</td>
<td>C</td>
<td>Equations: Writing</td>
</tr>
<tr>
<td>4.</td>
<td>B</td>
<td>Expressions: Addition</td>
</tr>
<tr>
<td>5.</td>
<td>C</td>
<td>Expressions: Division</td>
</tr>
<tr>
<td>6.</td>
<td>D</td>
<td>Expressions: Evaluating & Simplifying</td>
</tr>
<tr>
<td>7.</td>
<td>B</td>
<td>Expressions: Story Problems</td>
</tr>
<tr>
<td>8.</td>
<td>A</td>
<td>Function/Pattern - A</td>
</tr>
<tr>
<td>9.</td>
<td>C</td>
<td>Function/Pattern - B</td>
</tr>
<tr>
<td>10.</td>
<td>A</td>
<td>Geometric Patterns - C</td>
</tr>
<tr>
<td>11.</td>
<td>B</td>
<td>Inverse Operations - A</td>
</tr>
<tr>
<td>12.</td>
<td>D</td>
<td>Missing Elements - C</td>
</tr>
<tr>
<td>13.</td>
<td>A</td>
<td>Missing Elements - D</td>
</tr>
<tr>
<td>14.</td>
<td>B</td>
<td>Missing Elements - E</td>
</tr>
<tr>
<td>15.</td>
<td>B</td>
<td>Number Patterns - B</td>
</tr>
<tr>
<td>16.</td>
<td>A</td>
<td>Order of Operations</td>
</tr>
<tr>
<td>17.</td>
<td>A</td>
<td>Properties - D</td>
</tr>
<tr>
<td>18.</td>
<td>C</td>
<td>Properties - E</td>
</tr>
<tr>
<td>19.</td>
<td>A</td>
<td>Rates</td>
</tr>
<tr>
<td>20.</td>
<td>D</td>
<td>Ratio/Proportion - B</td>
</tr>
<tr>
<td>21.</td>
<td>C</td>
<td>Ratio/Proportion - C</td>
</tr>
<tr>
<td>22.</td>
<td>D</td>
<td>Rational Numbers: Equations</td>
</tr>
<tr>
<td>23.</td>
<td>C</td>
<td>Story Problems</td>
</tr>
<tr>
<td>24.</td>
<td>A</td>
<td>Averaging Numbers</td>
</tr>
<tr>
<td>25.</td>
<td>D</td>
<td>Combinations</td>
</tr>
<tr>
<td>26.</td>
<td>C</td>
<td>Graphs (Line) - A</td>
</tr>
<tr>
<td>27.</td>
<td>A</td>
<td>Graphs (Line) - B</td>
</tr>
<tr>
<td>28.</td>
<td>A</td>
<td>Mean/Median/Mode/Range - A</td>
</tr>
<tr>
<td>29.</td>
<td>B</td>
<td>Mean/Median/Mode/Range - B</td>
</tr>
<tr>
<td>30.</td>
<td>B</td>
<td>Permutations</td>
</tr>
<tr>
<td>31.</td>
<td>D</td>
<td>Probability/Statistics - A</td>
</tr>
<tr>
<td>32.</td>
<td>A</td>
<td>Probability/Statistics - C</td>
</tr>
<tr>
<td>33.</td>
<td>B</td>
<td>Real World Problem: Average</td>
</tr>
<tr>
<td>34.</td>
<td>A</td>
<td>Tables - F</td>
</tr>
<tr>
<td>35.</td>
<td>A</td>
<td>Tree Diagrams</td>
</tr>
<tr>
<td>36.</td>
<td>B</td>
<td>Add Decimals: Story Problems - A</td>
</tr>
<tr>
<td>37.</td>
<td>D</td>
<td>Add Decimals: Story Problems - B</td>
</tr>
<tr>
<td>38.</td>
<td>A</td>
<td>Compare Decimals - C</td>
</tr>
<tr>
<td>39.</td>
<td>C</td>
<td>Divide Decimals</td>
</tr>
<tr>
<td>40.</td>
<td>A</td>
<td>Divide Decimals: Story Problems</td>
</tr>
<tr>
<td>41.</td>
<td>C</td>
<td>Multiply Decimals: Story Problems</td>
</tr>
<tr>
<td>42.</td>
<td>A</td>
<td>Order of Operations with Decimals - A</td>
</tr>
<tr>
<td>43.</td>
<td>D</td>
<td>Order of Operations with Decimals - B</td>
</tr>
<tr>
<td>44.</td>
<td>A</td>
<td>Place Value: Decimals - A</td>
</tr>
<tr>
<td>45.</td>
<td>C</td>
<td>Place Value: Decimals - B</td>
</tr>
</tbody>
</table>
46. C Story Problems: Add/Sub Decimals
47. D Subtract Decimals: Story Problems - A
48. C Subtract Decimals: Story Problems - B
49. A Subtract Decimals: Story Problems - C
50. A Add Fractions: Story Problems - A
51. B Add Fractions: Story Problems - B
52. A Compare Fractions
53. A Divide Fractions
54. B Divide Fractions: Mixed Numbers
55. D Divide Fractions: Story Problems - B
56. B Fractions: Estimation - B
57. D Lowest Terms - B
58. B Multiply Fractions - A
59. C Multiply Fractions with Whole Numbers
60. A Multiply Fractions: Mixed Numbers
61. B Subtract Fractions: Story Problems - B
62. C Angles - A
63. B Angles - B
64. B Angles - C
65. D Congruency - B
66. C Coordinate Geometry - A
67. B Coordinate Geometry - B
68. C Coordinate Geometry - C
69. B Coordinate Geometry - D
70. B Figures - D
71. B Lines
72. B Polygons - A
73. A Polygons - B
74. B Polygons - C
75. A Spatial Relationships - B
76. A Symmetry - A
77. D Symmetry - B
78. A Triangles - A
79. D Area of Parallelogram - A
80. A Area of Parallelogram - B
81. B Area of Rectangle - A
82. B Area of Rectangle - B
83. A Area of Rectangle - C
84. D Area of Rectangle - D
85. C Area of Triangle
86. A Length - B
87. D Mass/Capacity - A
88. A Mass/Capacity - B
89. B Mass/Capacity - C
90. D Scale Drawing
91. D Temperature - D
92. D Time - C
93. B Units of Measurement - A
94. A Units of Measurement - B
95. C Units of Measurement - C
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>96.</td>
<td>D</td>
<td>Units of Measurement - D</td>
</tr>
<tr>
<td>97.</td>
<td>D</td>
<td>Volume - C</td>
</tr>
<tr>
<td>98.</td>
<td>C</td>
<td>Volume - D</td>
</tr>
<tr>
<td>99.</td>
<td>C</td>
<td>Volume of Rectangular Prisms</td>
</tr>
<tr>
<td>100.</td>
<td>A</td>
<td>Comparison</td>
</tr>
<tr>
<td>101.</td>
<td>A</td>
<td>Equivalent Forms: Dec./Frac./Percent</td>
</tr>
<tr>
<td>102.</td>
<td>D</td>
<td>Equivalent Forms: Decimal/Fraction</td>
</tr>
<tr>
<td>103.</td>
<td>B</td>
<td>Equivalent Forms: Decimal/Mixed Fract.</td>
</tr>
<tr>
<td>104.</td>
<td>C</td>
<td>Number Lines - B</td>
</tr>
<tr>
<td>105.</td>
<td>A</td>
<td>Number Lines - C</td>
</tr>
<tr>
<td>106.</td>
<td>D</td>
<td>Rounding and Estimation - C</td>
</tr>
<tr>
<td>107.</td>
<td>D</td>
<td>Rounding and Estimation - E</td>
</tr>
<tr>
<td>108.</td>
<td>C</td>
<td>Rounding and Estimation - F</td>
</tr>
<tr>
<td>109.</td>
<td>A</td>
<td>Story Problems Percents - B</td>
</tr>
<tr>
<td>110.</td>
<td>C</td>
<td>Evaluating Solutions - A</td>
</tr>
<tr>
<td>111.</td>
<td>A</td>
<td>Adding Integers</td>
</tr>
<tr>
<td>112.</td>
<td>A</td>
<td>Dividing Integers</td>
</tr>
<tr>
<td>113.</td>
<td>B</td>
<td>Integers: Multiple-step Computation</td>
</tr>
<tr>
<td>114.</td>
<td>B</td>
<td>Multiplying Integers</td>
</tr>
<tr>
<td>115.</td>
<td>D</td>
<td>Story Problems Integers</td>
</tr>
<tr>
<td>116.</td>
<td>C</td>
<td>Subtracting Integers</td>
</tr>
<tr>
<td>117.</td>
<td>B</td>
<td>Understanding Integers</td>
</tr>
<tr>
<td>118.</td>
<td>B</td>
<td>Divide Whole No: Story Problems - B</td>
</tr>
<tr>
<td>119.</td>
<td>A</td>
<td>Divide Whole No: Story Problems - C</td>
</tr>
<tr>
<td>120.</td>
<td>A</td>
<td>Divide Whole No: Story Problems - D</td>
</tr>
<tr>
<td>121.</td>
<td>D</td>
<td>Divisibility/Multiples/Factors - A</td>
</tr>
<tr>
<td>122.</td>
<td>B</td>
<td>Multiple Operations: Whole Numbers - A</td>
</tr>
<tr>
<td>123.</td>
<td>B</td>
<td>Multiple Operations: Whole Numbers - B</td>
</tr>
<tr>
<td>124.</td>
<td>A</td>
<td>Prime/Composite Numbers - A</td>
</tr>
<tr>
<td>125.</td>
<td>B</td>
<td>Prime/Composite Numbers - B</td>
</tr>
</tbody>
</table>