ANATOMY & PHYSIOLOGY II — BIOL 2010

A. Course Description

- **Credits:** 4.00
- **Lecture Hours/Week:** 3.00
- **Lab Hours/Week:** 1.00
- **OJT Hours/Week:** 0
- **Prerequisites:**
 - BIOL 2000: Anatomy & Physiology I

- **Corequisites:** None
- **MnTC Goals:**
 - 03 – Natural Science

This course is the second semester of a two-semester lab-science course intended for students pursuing careers in fitness and allied health fields. Human anatomy and physiology are studied using a body systems approach, with emphasis on the interrelationships between form and function at the gross and microscopic levels of organization. Homeostasis is an integrating theme throughout this course. Content topics include immunity, metabolism, fluid balance, development, and the cardiovascular, hematopoietic, respiratory, lymphatic, digestive, urinary, and reproductive systems. Dissection of individual organs and whole organisms may be included. Meets MnTC Goal 3 Prerequisite: BIOL 2000 with a grade of C or better

B. Course Effective Dates: 8/1/02 – Present

C. Outline of Major Content Areas

As noted on course syllabus

D. Learning Outcomes

1. be an active team member and work effectively in a group
2. critically evaluate material presented in class and by the media as it relates to the functioning of the human body
3. demonstrate dissection skills
4. demonstrate effective oral and written skills
5. describe how the body is organized and the role each unit plays in the overall function of the human body
6. identify cells, tissues, organs, organ systems and their interactions
7. identify the structure of the human body on models, charts and diagrams
8. know the anatomical structure of the human body
9. understand the mechanisms of metabolism
10. use medical terminology correctly and spell the more frequently used terms correctly

E. Minnesota Transfer Curriculum Goal Area(s) and Competencies

Goal 03 — Natural Science

1. Demonstrate understanding of scientific theories.
2. Formulate and test hypotheses by performing laboratory, simulation, or field experiments in at least two of the natural science disciplines. One of these experimental components should develop, in greater depth, students' laboratory experience in the collection of data, its statistical and graphical analysis, and an appreciation of its sources of error and uncertainty.
3. Communicate their experimental findings, analyses, and interpretations both orally and in writing.
4. Evaluate societal issues from a natural science perspective, ask questions about the evidence presented, and make informed judgments about science-related topics and policies.

F. Learner Outcomes Assessment

As noted on course syllabus

G. Special Information

None noted